Tạp chí đã xuất bản
2004
ISSN
ISSN 2615-9813
ISSN (số cũ) 1859-3682

SỐ 183 | THÁNG 6/2021

Thế hệ X, nữ giới và dịch vụ ngân hàng số

Đặng Trí Dũng

Tóm tắt: Mục tiêu của bài viết này là tìm bằng chứng về sự khó khăn khi sử dụng dịch vụ ngân hàng số (NHS) liên quan đến thế hệ những người sinh ra trong giai đoạn 1965-1979 và nữ giới. Nghiên cứu sử dụng mô hình hồi quy tuyến tính Bayes thông qua thuật toán lấy mẫu Random-Walk Metropolis Hasting (MH). Số liệu được thu thập từ bộ dữ liệu Global Findex và Chỉ báo Phát triển Thế giới (World Development Indicators) của 183 quốc gia vào năm 2014. Kết quả nghiên cứu cho thấy, thế hệ những người sinh ra trong giai đoạn 1965-1979 và nữ giới ít sử dụng các dịch vụ mới từ NHS.  

Tài liệu tham khảo:

  1. Ariss, R. T. (2010). On the implications of market power in banking: Evidence from developing countries. Journal of Banking & Finance, 34(4), 765-775.
  2. Berger, A. N. (2003). The economic effects of technological progress: Evidence from the banking industry. Journal of Money, Credit and Banking, 141-176.
  3. Berkup, S. B. (2014). Working with generations X and Y in generation Z period: Management of different generations in business life. Mediterranean Journal of Social Sciences, 5(19), 218-218.
  4. Buckley, M. R., Beu, D. S., Novicevic, M. & Sigerstad, T. (2001). Managing generation neXt: Individual and organizational perspectives. Review of Business, 22.
  5. Compeau, D. R. & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS quarterly, 189-211.
  6. Goodhue, D. L. (1995). Understanding user evaluations of information systems. Management Science, 41(12), 1827-1844.
  7. Gupta, S., Yun, H., Xu, H. & Kim, H. (2017). An exploratory study on mobile banking adoption in Indian metropolitan and urban areas: a scenario-based experiment. Information Technology for Development, 23(1), 127-152.
  8. Gursoy, D., Maier, T. & Chi, C. (2008). Generational differences: An examination of work values and generational gaps in the hospitality workforce. International journal of hospitality management, 27(3), 448-458.
  9. He, J. & Freeman, L. A. (2010). Are men more technology-oriented than women? The role of gender on the development of general computer self-efficacy of college students. Journal of Information Systems Education, 21(2), 203-212.
  10. Hindman, D. B. (2000). The rural-urban digital divide. Journalism & Mass Communication Quarterly, 77(3), 549-560.
  11. Koetter, M. & Noth, F. (2013). IT use, productivity, and market power in banking. Journal of Financial Stability, 9(4), 695-704.
  12. Leonard, B. D. & Deschamps, I. (1988). Managerial influence in the implementation of new technology. Management Science, 34(10), 1252-1265.
  13. Levickaite, R. (2010). Generations X, Y, Z: How social networks form the concept of the world without borders (the case of Lithuania). LIMES: Cultural Regionalistics, 3(2), 170-183.
  14. Linh, N. T. X. (2020) Social Existence Determines Consciousness: How the Economy Matters for Cultural Changes? A Study of Selected Asian Countries. Asian Journal of Economics and Banking, 4(1), 117-136.
  15. Martin, C. A. (2005). From high maintenance to high productivity: What managers need to know about Generation Y. Industrial and commercial training.
  16. Nagamani, M. & Nandhini, N. (2015). Awareness of E-Banking Services Among Educated Women. International Journal of Research in IT & Management, 5(1), 41-48.
  17. Roberts, G. O. & Rosenthal, J. S. (2001). Optimal scaling for various Metropolis-Hastings algorithms. Statistical science, 16(4), 351-367.
  18. Scratch (2017) The millennial disruption index.
  19. Smith, L. (2013). Working hard with gender: Gendered labour for women in male dominated occupations of manual trades and information technology (IT). Equality, diversity and inclusion: An International journal.
  20. Thach, N. N., Anh, L. H., & An, P. T. H. (2019). The Effects of Public Expenditure on Economic Growth in Asia Countries: A Bayesian Model Averaging Approach, Asian Journal of Economics and Banking, 3(1), 126-149.
  21. Venkatesh, V. & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
  22. Venkatesh, V., Morris, M., Davis, G. & Davis, F. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.


X Generation, Women and Digital Banking Services

Abstract: The objective of the study is to find evidence of difficulties in using digital banking services related to the generation of people born in the period 1965-1979 and women. The study uses Bayesian linear regression model through the Random-Walk Metropolis Hastin (MH) sampling algorithm. Data is collected from the Global Findex and World Development Indicators datasets of 183 countries in 2014. The results show that the generation of people born in the period 1965-1979 and women are less likely to use new services from digital banking.